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Abstract

The current deficiencies of virtual
environment (VE) systems are well
known; annoying lag time in drawing the
current view, environments that are
drastically simplified in an effort to
reduce that lag time, low resolution and
narrow field of view. The scripting of
animations is an application of VE
technology which can be carried out
successfully despite these deficiencies.
None of the deficiencies is present in the
final product, a smoothly-moving high-
resolution animation displaying detailed
models. In this animation system, the
user is represented in the VE by a
human computer model with the same
bodily proportions. Using magnetic
tracking, the motions of the model’s
upper torso, head and arms. are
controlled by the user's movements (18
DOF). The model’s lower torso and
global position and orientation are
controlled by a spaceball and keypad (12
DOF). Using this system the human
motion scripts can be extracted from the
movements of a user while immersed.in
a simplified virtual environment. The
recorded data is used to define key
frames; motion is interpolated between
themand post processing is done to add a
more detailed environment. The result
is a considerable savings in time and a
much more natural-looking movement
of a human figure in a smooth and
seamless animation.
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1.0 Introduction

When composing animations portraying
moving humans, a way of ensuring
natural-looking movements is to
capture motion from actual humans
[1,2,3,4,5]. Furthermore, placing the
person whose movements are being
captured in a mockup of the environment
which is to be displayed allows
registration of position and motion
accurately with respect to that
environment. We propose the use of a
"soft" mockup or a virtual environment
(VE) for this purpose.

Human motion can be scripted by
specifying individual joint angles or by
specifying the goals of the motion and
computing the joint angles with an
inverse kinematics algorithm [2].
However, the motion produced by both of
these methods tends to have an unnatural
appearance [6,7,8]. Also, we have found
that capturing actual motion takes
considerably less time than specifying
individual joint angles by interactively
specifying movement goals, and produces
more realistic motion.

The current deficiencies of VE systems
are well known. There are painful
tradeoffs between resolution and field of
view and between the time it takes to
draw the current view and the
complexity of the virtual environment
[9,10]. Typically one must settle for an
unnaturally narrow field of view and a
simplified, cartoon-like visual
environment. Because the environment
in which the motion is captured need




only be an approximation of the
environment which appears in the final
animation, these deficiencies are not a
serious hindrance for scripting
animations.

2.0 Background

The Graphics Research and Analysis
Facility (GRAF) at the Johnson Space
Center, Houston, the authors research
human modeling as it relates to the
human factoring of man-in-the-loop
systems. Animations involving human
movement are of particular interest for
optimizing human performance and for
checking consistency and continuity of
task designs[11]. Heretofore, the
composition of animations involving
human movement has been a painstaking
operation in which a user at an
interactive workstation specifies each
movement of each joint. The method of
scripting described in this paper results
in a considerable savings of time and
produces more natural-looking human
movements in an animation.

3.0 Description of the system

3.1 Tracking and Computing the
Human Motion.

The first phase involves the capture of
the tracking information from actual
human motion and the computation and
display of the resultant motion of the
human model within the VE. In order to
insure that the models movements are
accurate and that its joint angles mimic
those of the user, it is necessary for the
figure's major anthropometric
measurements to be the same as those of
the user.

The user wears a head-mounted display
(HMD) slaved to the viewpoint by means
of a magnetic tracker. The user is
personified in the VE as a human model
figure with the viewpoint at the figure's
eye sites. A total of four trackers
suffices to mimic upper-body motion
(16 DOF) [1,2,3]; the trackers are
positioned on the head, wrists and upper
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back. The upper-body joint angles are
computed with an inverse kinematics
(1K) algorithm[6,7,8]. Wrist
radial/ulnar deviation is omitted,
leaving only 6 DOF for the arm and
shoulder making their joint angle
computations deterministic; hence the
joint angles are rapidly computed and
for most motions are constrained to
match those of the user. The shoulder
complex motion is ignored leading to
some error in the motion. Inclusion of
the complex clavicle and scapular
motion would make the inverse-
kinematic computation non-
deterministic and difficult to control
with one tracker. It is important to note
that, in this phase, a simplified VE is
sufficient, as long as it contains the
visual cues needed for the motion.

The software system is divided into two
drawing servers, one reach server, and
one magnetic tracking server (See
Figure 1). The main client retrieves
the current state of the user from the
tracking server, polls the spaceball for
translation and rotation information,
and merges the spaceball information
with the tracker information. This
information is passed to the reach
server which computes the resulting
motion in terms of changes in joint
angles[12]. The reach server
computation is done in a software
package called Jack initiated under a
NASA university grant by our
laboratory at the University of
Pennsylvania [6]. The changes in the
position and orientation of the figure as
well as the joint angle changes of the
body are relayed to the drawing servers
which update the environment and pipe
the needed stereo views to the head
mounted display. The advantages of this
distributed design is not only speed, but
also that any server could reside on any
machine on the internet (e.g. tracking
information could come from another
facility ).

The position and orientation of the figure
can be controlled by an operator using a
six-degree-of-freedom spaceball. Each



magnetic tracker matrix is first
converted to the coordinate system of the
figure (at the base of feet). The
spaceball information (relative mode
translation and rotation pulses) is
accumulated and applied to each of the
magnetic tracker matrices in the figure
coordinate system. The composite
matrices are converted back to global
coordinate system to be presented to the
inverse kinematic reach server. The
scheme allows the figure to be moved by
the operator using the spaceball in a
natural manner (with respect to the
figures coordinate system) while the
motions of the user are applied to the
human models new translated and rotated
coordinate system. The joint angles of
the lower limbs can be changed by the
operator using the buttons on the
spaceball device[1].

3.2 Scripting the Animation.

Scripting the animation involves
processing of the captured human motion
sequences to produce the key frames of
the animation. It requires two people to
use the system. The first is the actual
personified user with the magnetic
trackers appropriately positioned on the
body. The second is the operator who
will control the position and orientation
of the figure in the VE based on the
user’s requests. The operator will also
command the system to write key frames
of the animation at appropriate times.
The issue of producing an animation that
has a realistic time-line is still being
researched.

The operator initiates the session by
bringing the user to within reaching
distance of the specific work
environment. The user then performs
the activity as prescribed by the task
plan. At the operator's signal, the
system records the state of every
moveable part. The user telis the
operator where and how to orient the
figure. Upon completion of the session,
a file of human motions is produced.
These recorded data are used to define
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key frames; post processing software
interpolates motion between the key
frames to produce a smooth animation.

3.3 Producing High
Resolution Animation.

the

The recording of the scripting is done in
a simplified VE. Because the post
processing is not time-critical, it can
use more complex models supplying
details that were missing in the VE. The
simplified human model is replaced with
a high-resolution model and the
environment is made much more
detailed. The keyfile is then replayed
into the animation frame generation
program which interpolates between all
the key frames. It is also possible to do
other special post processing which
include texture mapping and realistic
lighting (see the section on future work
below) (Figure 2).

4.0 Discussion

A narrowed field of view can affect
distance judgments adversely [13,14];
however, we found that, within the
extent of human reach, it was not
difficult to make sufficiently accurate
movements. Also, knowing the relative
size of objects (i.e. size of hand relative
to a workstation screen, for instance)
and knowing the approximate location of
at least one (your hand) seemed to
increase the knowledge of relative
distances. One reason may be that
stereopsis is a useful distance cue with a
person's reach extent [10].

It can be argued that a helmet mounted
display is not needed to script the human
animations. Scripting an animation
using two global views of the human
with the user and the operator working
the system was tried. When the user
tried to view what was being displayed
on the monitors, it changed the motion of
the human model. There exists an
“animation uncertainty principle”.
That is, the item being measured (the
human being) changes as soon as one
tries to see one's own changes on a



display monitor. In order for a natural
looking animation, the user needs to see
what they are looking at and working
with. It is believed that the more
immersed an individual is into the
environment, the more realistic the
motions will appear. A helmet mounted
display provides some of that
functionality with some severe
limitations.

The user's left and right-eye views can
be seen by the spaceball operator on
monitors; however, they are not
particularly convenient to use when
repositioning or reorienting the VE.
Hence, a third view is needed which
would give the spaceball operator an
overview of the action; ideally, the
operator should be able to move this
viewpoint.

The dramatic effect of realistic motion
was caused by very subtle motions.
When the user turned her head, there
would be slight motions of the waist, and
hands. These motions would be very
difficult to reproduce manually. When
the user looked up, the back would arch
by a few degrees and the elbows might
swing back.

The spaceball offered a very distinct
advantage. The user could stay
relatively close to the magnetic tracker
source (this is needed for accuracy) and
still be “virtually” moved to any
location with any orientation within the
virtual environment. Moreover,
because the HMD and the magnetic
trackers have many cables, the user was
also safer to stay seated on a chair just
moving the head, torso and arms.

With more trackers, we could capture
lower body motion also. Walking while
tethered with an HMD and magnetic
trackers presents some obvious
problems. (Perhaps it is fortunate that
one does not walk in microgravity.)
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5.0 Conclusion

A virtual environment can provide a
rapid and convenient way of capturing
human motion sequences. Immersion in
the virtual environment allows the user
to be positioned correctly relative to the
environment and to perform accurate
reaching movements. A simplified VE
can be used to give an adequate display
rate for capturing the motion and then .
replaced by a more detailed environment
when the captured motion is used to
generate an animation. Other post
processing can provide additional special
effects in the finished product, a smooth
and seamless animation.

6.0 Future Work

Several extensions of this work are
planned for the future.

We intend to allow the figure and user to
have different bodily dimensions; thus,
for instance, we will be able to script
movements for the 5th and 95th
percentile individuals so beloved of
human factors engineers.

A right-handed CyberGlove has already
been incorporated into the system. The
CyberGlove senses the motions of the
joints of the hand (18 DOF). It gives
2DOF for the wrist, supplying the
missing wrist radial/ulnar deviation
and leaving only SDOF for the arm and
shoulder IK algorithm. Once a left
-handed glove is acquired, animations
involving both hands will be done.

There is no limit to the amount to the
post-processing that can be done once
the motion is captured. For instance,
the Radiance algorithm is used in the
GRAF to do realistic light computations
[15]; we would like to use it to provide
realistic lighting for the animations.
Additional texture maps, or more
detailed texture maps, can also be used.
If needed, a texture map based recursive
animation (animation inside an
animation) could be created to reflect,
for instance, changing views on a



monitor of the Space Shuttle cargo bay
operation. This animation could be
displayed with texture maps on a
monitor within the environment.

Collision detection would be a real
convenience in the VE to ensure that the
reaches are accurate. Collision detection
is computationally expensive, but even a
restricted form of it would be useful in
the detection of the intersection of one
point at the end of the user's extended
finger with any of a set of "reachable"
objects [16].

It is possible to record the animation
with a viewpoint different from the
user's, or with a different field of view.
One possibility is to allow the viewpoint
to move and to specify its position
interactively as the animation frames
are produced.

Two viewpoints from the recorded data
could be reconstructed and used to make
a stereo presentation of the animation
that could be viewed with the HMD.
Synchronization of the two images
requires some special measures.

Finally, as soon as we acquire more
trackers, we intend to put a second user
into a VE.
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